
Excel Link
For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 2

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Excel Link User’s Guide

© COPYRIGHT 1996–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 1996 First printing New for Version 1.0
May 1997 Second printing Updated for Version 1.0.3
January 1999 Third printing Updated for Version 1.0.8 (Release 11)
September 2000 Fourth printing Updated for Version 1.1.2
April 2001 Fifth printing Updated for Version 1.1.3
July 2002 Sixth printing Updated for Version 2.0 (Release 13)
September 2003 Online only Updated for Version 2.1 (Release 13SP1)
June 2004 Online only Updated for Version 2.2 (Release 14)
September 2005 Online only Updated for Version 2.3 (Release 14SP3)
March 2006 Online only Updated for Version 2.3.1 (Release 2006a)
September 2006 Online only Updated for Version 2.4 (Release 2006b)

Contents

Getting Started

1
What Is Excel Link? . 1-2

Understanding the Environment . 1-2

Installing and Operating Excel Link 1-3
System Requirements . 1-3
Installing Excel Link . 1-3
Configuring Excel to Work with Excel Link 1-3
Starting Excel Link . 1-5
Connecting to an Existing MATLAB Session 1-5
Stopping Excel Link . 1-6

What the Functions Do . 1-7
Link Management Functions . 1-7
Data Management Functions . 1-8

Tips and Reminders . 1-10
Syntax . 1-10
Worksheets . 1-11
Macros . 1-12
Data Types . 1-13
Dates . 1-13
Saved Worksheets . 1-13
Information for International Users 1-14

Using Excel Link

2
Example 1: Regression and Curve Fitting 2-2

Worksheet Version . 2-2
Macro Version . 2-4

v

Example 2: Interpolating Data . 2-8

Example 3: Pricing a Stock Option with the Binomial
Model . 2-12

Example 4: Calculating and Plotting the Efficient
Frontier of Financial Portfolios 2-15

Example 5: Bond Cash Flow and Time Mapping 2-19

Functions — By Category

3
Link Management . 3-1

Data Management . 3-1

Functions — Alphabetical List

4

Error Messages and Troubleshooting

A
Excel Cell Error Messages . A-2

Error Messages . A-5

Audible Error Signals . A-7

Data Errors . A-8

vi Contents

Installed Files

B
Files and Directories . B-2

Index

vii

viii Contents

1

Getting Started

What Is Excel Link? (p. 1-2) How Excel Link works with both
MATLAB® and Excel®.

Installing and Operating Excel Link
(p. 1-3)

How to make Excel Link work with
Excel after installation.

What the Functions Do (p. 1-7) Describes the two kinds of Excel
Link functions -- Link Management
and Data Management.

Tips and Reminders (p. 1-10) Miscellaneous details concerning
product use.

1 Getting Started

What Is Excel Link?
Excel Link is a software add-in that integrates Microsoft Excel and MATLAB
in a Microsoft Windows-based computing environment. By connecting Excel
and MATLAB, you can access the numerical, computational, and graphical
power of MATLAB from Excel worksheet and macro programming tools. Excel
Link lets you exchange and synchronize data between the two environments.

Understanding the Environment
Excel Link communicates between the Excel workspace and the MATLAB
workspace. It positions Excel as a front end to MATLAB. You use Excel Link
functions from an Excel worksheet or macro, and you never have to leave the
Excel environment. With a small number of functions to manage the link and
manipulate data, Excel Link is powerful in its simplicity.

1-2

Installing and Operating Excel Link

Installing and Operating Excel Link
Follow these instructions to install Excel Link and then configure Excel.

System Requirements
Excel Link requires approximately 202 kilobytes of disk space. Operating
system requirements are

• Microsoft Windows XP

• Microsoft Windows 2000

Excel Link also requires one of the following versions of Excel:

• Excel 2000

• Excel 2002

• Excel 2003

and MATLAB for Windows.

For best results with MATLAB figures and graphics, set the color palette
of your display to a value greater than 256 colors. Click Start > Settings
> Control Panel > Display, and then click the Settings tab. Choose an
appropriate entry from the Color Palette menu.

Installing Excel Link
Install Windows and Excel before you install MATLAB and Excel Link.
To install Excel Link, follow the instructions in the MATLAB installation
documentation. Select the Excel Link check box when you select MATLAB
components to install.

Configuring Excel to Work with Excel Link
After you have installed Excel Link, you are ready to configure Excel. You
need do these steps only once:

1 Start Microsoft Excel.

1-3

1 Getting Started

2 Select Tools > Add-Ins and click Browse.

3 Find and select the Excel Link add-in excllink.xla under
matlabroot/toolbox/exlink. Click OK.

Note Throughout this document the notation matlabroot represents the
MATLAB root directory, the directory where MATLAB is installed on your
system.

4 Back in the Add-Ins dialog box, make sure that the check box is selected
and click OK. The Excel Link add-in loads now and with each subsequent
invocation of Excel.

5 Watch for the appearance of the MATLAB Command Window button on
the Windows taskbar.

6 Watch for the appearance of the Excel Link toolbar on your Excel worksheet.

��������	
�����

��������������
����
��

���
�
������
��	
�� �����������	
��

������

����������	
��
������

 ����������������	
��
!�"���

Excel Link is now ready for your use.

1-4

Installing and Operating Excel Link

Starting Excel Link

Automatic Start
When installed and configured according to the preceding instructions, Excel
Link and MATLAB automatically start when you start Excel.

If you do not want Excel Link and MATLAB to start automatically when you
start Excel, enter =MLAutoStart("no") in a worksheet cell. This function
changes the initialization file so that Excel Link and MATLAB no longer
start automatically when you start Excel. See MLAutoStart in Chapter 4,
“Functions — Alphabetical List”.

Manual Start
To start Excel Link and MATLAB manually from Excel, select Tools >
Macro. In the Macro Name/Reference box enter matlabinit and click
Run. Watch for the MATLAB Command Window button to appear on the
taskbar. See matlabinit in Chapter 4, “Functions — Alphabetical List”.

Connecting to an Existing MATLAB Session
To connect a new Excel session to an existing MATLAB process, you must
start MATLAB with the /automation command-line option. The /automation
option starts MATLAB as an automation server. The Command Window is
minimized, and the MATLAB desktop is not running.

To add the /automation option to the command line:

1 Right-click your shortcut to MATLAB.

2 Select Properties.

3 Click the Shortcut tab.

4 Add the string /automation in the Target field. Remember to leave a
space between matlab.exe and /automation.

1-5

1 Getting Started

Stopping Excel Link
To stop both Excel Link and MATLAB, stop Excel as you normally would.
Excel Link and MATLAB both stop when you stop Excel.

To stop MATLAB and Excel Link and leave Excel running, enter =MLClose()
in an Excel worksheet cell. You can restart Excel Link and MATLAB
manually with MLOpen or matlabinit.

If you stop MATLAB directly in the MATLAB Command Window and leave
Excel running, enter =MLClose() in an Excel worksheet cell. (MLClose tells
Excel that MATLAB is no longer running.) You can restart Excel Link and
MATLAB manually with MLOpen or matlabinit.

1-6

What the Functions Do

What the Functions Do
With Excel Link, Microsoft Excel becomes an easy-to-use data-storage
and application-development front end for MATLAB, which is a powerful
computational and graphical processor.

Excel Link provides functions to manage the link and to manipulate data.
You never have to leave the Excel environment. You can invoke functions as
worksheet cell formulas or in macros.

For details on each function, see Chapter 4, “Functions — Alphabetical List”.

Link Management Functions
Excel Link provides four link management functions to initialize, start, and
stop Excel Link and MATLAB.

Function Purpose

matlabinit Initialize Excel Link and start MATLAB process.

MLAutoStart Automatically start MATLAB process.

MLClose Terminate MATLAB process.

MLOpen Start MATLAB process.

You can invoke any link management function except matlabinit as a
worksheet cell formula or in a macro. You invoke matlabinit from the Excel
Tools Macro menu or in a macro subroutine.

Use MLAutoStart to toggle automatic startup. If you install and configure
Excel Link according to the default instructions, Excel Link and MATLAB
automatically start every time you start Excel. If you choose manual startup,
use matlabinit to initialize Excel Link and start MATLAB.

Use MLClose to stop MATLAB without stopping Excel, and use MLOpen or
matlabinit to restart MATLAB in the same Excel session.

1-7

1 Getting Started

Data Management Functions
Excel Link provides nine data management functions to copy data between
Excel and MATLAB and to execute MATLAB commands from Excel.

Function Purpose

matlabfcn Evaluate MATLAB command given Excel data.

matlabsub Evaluate MATLAB command given Excel data and
designate output location.

MLAppendMatrix Create or append MATLAB matrix with data from
Excel worksheet.

MLDeleteMatrix Delete MATLAB matrix.

MLEvalString Evaluate command in MATLAB.

MLGetFigure Import current MATLAB figure into Excel
spreadsheet.

MLGetMatrix Write contents of MATLAB matrix in Excel
worksheet.

MLGetVar Write contents of MATLAB matrix in Excel VBA
variable.

MLPutMatrix Create or overwrite MATLAB matrix with data
from Excel worksheet.

MLPutVar Create or overwrite MATLAB matrix with data
from Excel VBA variable.

MLShowMatlabErrors Used by MLEvalString to return standard Excel
Link errors or full MATLAB errors.

MLStartDir Specify current working directory of MATLAB
after startup.

MLUseFullDesktop Specify whether to use full MATLAB desktop or
only Command window.

You can invoke any data management function except MLGetVar and MLPutVar
as a worksheet cell formula or in a macro. You can invoke MLGetVar and
MLPutVar only in a macro.

1-8

What the Functions Do

Use MLAppendMatrix, MLPutMatrix, and MLPutVar to copy data from Excel
to MATLAB.

Use MLEvalString to execute MATLAB commands from Excel.

Use MLDeleteMatrix to delete a MATLAB variable.

Use matlabfcn, matlabsub, MLGetMatrix, and MLGetVar to copy data from
MATLAB to Excel.

1-9

1 Getting Started

Tips and Reminders
These tips and reminders help you use Excel Link efficiently.

Excel Link functions perform an action, while Microsoft Excel functions return
a value. Keep this distinction in mind as you use Excel Link. Excel operations
and function keys may behave differently with Excel Link functions.

Syntax

Function Names

• Excel Link function names are not case sensitive; that is, MLPutMatrix and
mlputmatrix are the same.

• MATLAB function names and variable names are case sensitive; that is,
BONDS, Bonds, and bonds are three different MATLAB variables. Standard
MATLAB function names are always lower case; for example, plot(f).

Worksheet Formulas

• Begin worksheet formulas with + or =. For example:

=mlputmatrix("a", C10)

• In worksheet formulas, enclose function arguments in parentheses. In
macros, leave a space between the function name and the first argument;
do not use parentheses.

Variable Names

• You can directly or indirectly specify a variable-name argument in most
Excel Link functions.

- To specify a variable name directly, enclose it in double quotes; for
example, MLDeleteMatrix("Bonds").

1-10

Tips and Reminders

- A variable-name argument without quotes is an indirect reference. The
function evaluates the contents of the argument to get the variable
name. The argument must be a worksheet cell address or range name.

• A data-location argument must be a worksheet cell address or range name.
Do not enclose a data-location argument in quotes (except in MLGetMatrix,
which has unique argument conventions).

• A data-location argument can include a worksheet number; for example,
Sheet3!B1:C7 or Sheet2!OUTPUT.

Note You can use virtually any special character as part of a worksheet
name if you embed the sheet name within single quotes ('') when
referencing it in MLGetMatrix or MLPutMatrix.

Worksheets

• After an Excel Link function successfully executes as a worksheet formula,
the cell contains the value 0. While a function is executing, the cell may
continue to show the entered formula.

• We suggest selecting Move Selection after Enter on the Excel Tools
Options > Edit tab. The active cell changes when an operation is complete,
providing a useful confirmation for lengthy operations.

• We recommend using Excel Link functions in automatic calculation mode.
If you use MLGetMatrix in manual calculation mode, enter the function in
a cell, then press F9 to execute it. However, pressing F9 in this situation
may also reexecute other worksheet functions and generate unpredictable
results.

• To recalculate Excel Link functions in a worksheet, reexecute each function
by pressing F2, then Enter.

• Pressing F9 to recalculate a worksheet affects only Excel functions (which
return a value). F9 does not operate on Excel Link functions, which
perform an action.

• To “automate” the recalculation of an Excel Link function, add to it some
cell whose value changes. For example:

1-11

1 Getting Started

=MLPutMatrix("bonds", D1:G26) + C1

When the value in cell C1 changes, Excel reexecutes the MLPutMatrix
function. Be careful, however, not to create endless recalculation loops.

• Excel Link functions expect A1-style worksheet cell references (columns
designated with letters and rows with numbers). This is the default
reference style. If your worksheet shows columns designated with numbers
instead of letters, select Tools > Options and click the General tab.
Under Settings, clear the R1C1 reference style check box.

• If you use explicit cell addresses in MLGetMatrix and later insert or delete
rows or columns, or move or copy the function to another cell, edit the
argument to correct the addresses. Excel Link does not automatically
adjust cell addresses in MLGetMatrix.

• Enter (type) Excel Link functions directly in worksheet cells. Do not use
the Excel Function Wizard; it generates unpredictable results.

Macros

• To create macros that use Excel Link functions, you must first configure
Excel to reference the functions from the Excel Link add-in. From the
Visual Basic environment, select Insert > Module. When the Module
page opens, select Tools > References. In the References dialog box,
select the box for excllink.xla and click OK. You may have to use Browse
to find the excllink.xla file.

• If you use MLGetMatrix in a macro subroutine, enter MatlabRequest on
the line after MLGetMatrix. MatlabRequest initializes internal Excel
Link variables and enables MLGetMatrix to function in a subroutine. For
example:

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest
End Sub

Do not include MatlabRequest in a macro function unless the macro
function is called from a subroutine.

1-12

Tips and Reminders

Data Types

• Excel Link handles only MATLAB two-dimensional numeric arrays,
one-dimensional character arrays (strings), and two-dimensional cell
arrays. It does not work with MATLAB multidimensional arrays and
structures.

Dates

• Default Excel date numbers start from January 1, 1900, while MATLAB
date numbers start from January 1, 0000. Thus May 15, 1996 is 35200 in
Excel and 729160 in MATLAB, a difference of 693960. If you use date
numbers in MATLAB calculations, apply the 693960 constant: add it to
Excel date numbers going into MATLAB, or subtract it from MATLAB
date numbers coming into Excel. If you use the optional Excel 1904 date
system, the constant is 695422.

Saved Worksheets

• When you open an Excel worksheet that contains Excel Link functions,
Excel tries to execute the functions from the bottom up and right to left,
thus possibly generating cell error messages (#COMMAND!, #NONEXIST!, etc.).
Such behavior is usual for Excel. Simply ignore the messages, close any
MATLAB figure windows, and reexecute the cell functions one at a time in
the correct order by pressing F2, and then Enter.

• If you save an Excel worksheet containing Excel Link functions and later
open it under a different computer environment where the excllink.xla
add-in is in a different location, Excel may display a message box.

Click No. Then select Edit > Links. In the Links dialog box, click Change
Source. In the Change Links dialog box, find and select excllink.xla

1-13

1 Getting Started

under matlabroot/toolbox/exlink and click OK. Excel executes each
function as it changes its link. You may see MATLAB figure windows and
hear error beeps as the links change and functions execute; ignore them.
Back in the Links dialog box, click OK. The worksheet now correctly
connects to the Excel Link add-in.

Or, instead of using the Edit Links menu, you can manually edit the link
location in each affected worksheet cell to show the correct location of
excllink.xla.

Information for International Users
This document uses Excel with an English (United States) Windows
regional setting for illustrative purposes. If you use Excel Link with a
non-English (United States) Windows desktop environment, certain
syntactical elements may not work as illustrated. For example, you may have
to replace the comma (,) delimiter within the Excel Link commands with a
semicolon (;) or other operator.

Please consult your Windows documentation to determine which regional
setting differences exist among various international versions.

1-14

2

Using Excel Link

This chapter shows how Microsoft Excel, Excel Link, and MATLAB work
together to solve real-world problems.

These examples ship with Excel Link in the file ExliSamp.xls, which is
installed in matlabroot/toolbox/exlink/. Start Excel, Excel Link, and
MATLAB. Open and try executing the examples.

Note Examples 1 and 2 use only basic MATLAB functions. Examples 3, 4,
and 5 use functions in the optional MATLAB Financial Toolbox. The Financial
Toolbox in turn requires the Statistics Toolbox and Optimization Toolbox.

Example 1: Regression and Curve
Fitting (p. 2-2)

Data regression and curve fitting.

Example 2: Interpolating Data
(p. 2-8)

Uses an Excel worksheet to organize
and display the original data and the
interpolated output data.

Example 3: Pricing a Stock Option
with the Binomial Model (p. 2-12)

Uses the binomial model to price an
option.

Example 4: Calculating and Plotting
the Efficient Frontier of Financial
Portfolios (p. 2-15)

Analyzes three portfolios, using
rates of return for six time periods.

Example 5: Bond Cash Flow and
Time Mapping (p. 2-19)

Computes a set of cash flow amounts
and dates given a portfolio of five
bonds.

2 Using Excel Link

Example 1: Regression and Curve Fitting
Regression techniques and curve fitting attempt to find functions that
describe the relationship among variables. In effect, they attempt to build
mathematical models of a data set. MATLAB provides many powerful yet
easy-to-use matrix operators and functions to simplify the task.

This example does both data regression and curve fitting. It also executes the
same example in a worksheet version and a macro version. The example uses
Excel worksheets to organize and display the data. Excel Link functions
copy the data to MATLAB and execute MATLAB computational and graphic
functions. The macro version also returns output data to an Excel worksheet.

Worksheet Version
To try the worksheet-only version of this example, click the Sheet1 tab on the
ExliSamp.xls window.

2-2

Example 1: Regression and Curve Fitting

The worksheet contains one named range: A4:C28 is named DATA and
contains the sample data set:

1 Make E5 the active cell. Press F2, then Enter to execute the Excel Link
function that copies the sample data set to MATLAB. The data set contains
25 observations of three variables. There is a strong linear dependence
among the observations; in fact, they are close to being scalar multiples of
each other.

2 Move to cell E8 and press F2, then Enter. Repeat with cells E9 and E10.
These Excel Link functions tell MATLAB to regress the third column of
data on the other two columns. They create a single vector y containing the
third-column data, and a new three-column matrix A consisting of a column
of ones followed by the rest of the data.

3 Execute the function in cell E13. This function computes the regression
coefficients by using the MATLAB backslash operation to solve the
(overdetermined) system of linear equations, A*beta = y.

4 Execute the function in cell E16. MATLAB matrix-vector multiplication
produces the regressed result (fit).

5 Execute the functions in cells E19, E20, and E21. These functions compare
the original data with fit; sort the data in increasing order and apply
the same permutation to fit; and create a scalar for the number of
observations.

6 Execute the functions in cells E24 and E25. Often it is useful to fit a
polynomial equation to data. To do so, you would ordinarily have to set up
a system of simultaneous linear equations and solve for the coefficients.
The MATLAB polyfit function automates this procedure, in this case for a
fifth-degree polynomial. The polyval function then evaluates the resulting
polynomial at each data point to check the goodness of fit (newfit).

7 Execute the function in cell E28. The MATLAB plot function graphs the
original data (blue circles), the regressed result fit (dashed red line), and
the polynomial result (solid green line); and adds a legend. Data plots.

2-3

2 Using Excel Link

Since the data is closely correlated but not exactly linearly dependent, the
fit curve (dashed line) shows a close, but not an exact, fit. The fifth-degree
polynomial curve, newfit, represents a more accurate mathematical model
for the data.

When you have finished this version of the example, close the figure window.

Macro Version
To try the macro-and-worksheet version of this example, click the Sheet2
tab on ExliSamp.xls.

2-4

Example 1: Regression and Curve Fitting

Make cell A4 the active cell, but do not execute it yet.

Cell A4 calls the macro CurveFit, which you can examine from the Visual
Basic environment.

2-5

2 Using Excel Link

While this module is open, select Tools > References. In the References
dialog box, make sure that the excllink.xla check box is selected. If not,
select the check box and click OK. You may have to use Browse to find the
excllink.xla file.

Back in cell A4 of Sheet2, press F2, then Enter to execute the CurveFit
macro. The macro executes the same functions as in Step 1 through Step 7
of the worksheet version (in a slightly different order), including plotting
the graph. Plus, it copies the original data y (sorted), the corresponding
regressed data fit, and the polynomial data newfit, to the worksheet. (The
last three MLGetMatrix functions in the CurveFit macro copy data to the
Excel worksheet.)

2-6

Example 1: Regression and Curve Fitting

When you have finished the example, close the figure window.

2-7

2 Using Excel Link

Example 2: Interpolating Data
Interpolation is a process for estimating values that lie between known data
points. It is important for applications such as signal and image processing
and data visualization. MATLAB provides a number of interpolation functions
that let you balance the smoothness of data fit with execution speed and
efficient memory use.

This example uses a two-dimensional data-gridding interpolation function
on thermodynamic data, where volume has been measured for time
and temperature values. It finds the volume values underlying the
two-dimensional time-temperature function for a new set of time and
temperature coordinates.

The example uses an Excel worksheet to organize and display the original
data and the interpolated output data. Excel Link functions copy the data to
and from MATLAB, execute the MATLAB interpolation function, and invoke
MATLAB graphics to display the interpolated data in a three-dimensional
color surface.

To try this example, click the Sheet3 tab on ExliSamp.xls.

2-8

Example 2: Interpolating Data

The worksheet contains the measured thermodynamic data in cells A5:A29,
B5:B29, and C5:C29. The time and temperature values for interpolation are
in cells E7:E30 and F6:T6 respectively:

1 Make A33 the active cell. Press F2, then Enter to execute the Excel Link
function that passes the Time, Temp, and Volume labels to MATLAB.

2 Make A34 the active cell. Press F2, then Enter to execute the Excel Link
function that copies the original time data to MATLAB. Move to cell A35

2-9

2 Using Excel Link

and execute the function to copy the original temperature data. Execute
the function in cell A36 to copy the original volume data.

3 Move to cell A39 and press F2, then Enter to copy the interpolation
time values to MATLAB. Execute the function in cell A40 to copy the
interpolation temperature values.

4 Execute the function in cell A43. griddata is the MATLAB two-dimensional
interpolation function that generates the interpolated volume data using
the inverse distance method.

5 Execute the functions in cells A46 and A47 to transpose the interpolated
volume data and copy it to the Excel worksheet. The data fills cells F7:T30,
which are enclosed in a border.

6 Execute the function in cell A50. MATLAB plots and labels the interpolated
data on a three-dimensional color surface, with the color proportional to the
interpolated volume data.

2-10

Example 2: Interpolating Data

When you have finished with the example, close the figure window.

2-11

2 Using Excel Link

Example 3: Pricing a Stock Option with the Binomial
Model

The MATLAB Financial Toolbox provides several functions that compute
prices, sensitivities, and profits for portfolios of options or other equity
derivatives. This example uses the binomial model to price an option. The
binomial model assumes that the probability of each possible price over time
follows a binomial distribution; that is, that prices can move to only two
values, one up and one down, over any short time period. Plotting the two
values, and then the subsequent two values each, and then the subsequent
two values each, and so on, over time, is known as building a binomial tree.

This example uses the Excel worksheet to organize and display input and
output data. Excel Link functions copy data to a MATLAB matrix, calculate
the prices, and return data to the worksheet.

Note This example requires use of the optional MATLAB Financial Toolbox.

Click the Sheet4 tab on ExliSamp.xls to try this example.

2-12

Example 3: Pricing a Stock Option with the Binomial Model

The worksheet contains three named ranges:

• B4:B10 named bindata

• B15 named asset_tree

• B23 named value_tree

Also, two cells in bindata actually contain formulas:

• B7 contains =5/12

• B8 contains =1/12

Make D5 the active cell. Press F2, then Enter to execute the Excel Link
function that copies the asset data to MATLAB. Move to D8 and execute the
function that computes the binomial prices, then execute the functions in D11
and D12 to copy the price data to Excel.

2-13

2 Using Excel Link

The worksheet looks like this.

Read the asset price tree this way: Period 1 shows the up and down prices,
Period 2 shows the up-up, up-down, and down-down prices, Period 3 shows
the up-up-up, up-up, down-down, and down-down-down prices, and so on.
Ignore the zeros. The option value tree gives the associated option value for
each node in the price tree. Because this is a put, the option value is zero for
prices significantly above the exercise price. Ignore the zeros that correspond
to a zero in the price tree.

Try changing the data in B4:B10 and reexecuting the Excel Link functions.
Note, however, that if you increase the time to maturity (B7) or change the
time increment (B8), you may need to enlarge the output tree areas.

2-14

Example 4: Calculating and Plotting the Efficient Frontier of Financial Portfolios

Example 4: Calculating and Plotting the Efficient Frontier
of Financial Portfolios

MATLAB and the Financial Toolbox provide functions that compute and
graph risks, variances, rates of return, and the efficient frontier of portfolios.
Efficient portfolios have the lowest aggregate variance, or risk, for a given
return. Excel and Excel Link let you set up data, execute financial functions
and MATLAB graphics, and display numeric results.

This example analyzes three portfolios, using rates of return for six time
periods. In actual practice, these functions can analyze many portfolios over
many time periods, limited only by the amount of computer memory available.

Note This example requires use of the optional MATLAB Financial Toolbox.

Click the Sheet5 tab on ExliSamp.xls to try this example.

2-15

2 Using Excel Link

Make A15 the active cell. Press F2, then Enter to execute the Excel Link
function that transfers the labels describing the outputs to be computed by
MATLAB. Then make A16 the active cell to copy the actual portfolio return
data to MATLAB. Execute the functions in A19 and A20 to compute the
MATLAB Financial Toolbox efficient frontier function for 20 points along the
frontier. Execute the Excel Link functions in A23, A24, and A25 to copy the
output data to Excel.

The worksheet looks like this.

2-16

Example 4: Calculating and Plotting the Efficient Frontier of Financial Portfolios

The data describes the efficient frontier for these three portfolios: that set of
points representing the highest rate of return (ROR) for a given risk. For each
of the 20 points along the frontier, the weighted investment in each portfolio
(Weights) would achieve that rate of return.

Now move to A28 and press F2, then Enter to execute the Financial Toolbox
function that plots the efficient frontier for the same portfolio data.

MATLAB displays a figure.

2-17

2 Using Excel Link

The light blue line shows the efficient frontier. Note the change in slope above
a 6.8% return because the Corporate Bond portfolio no longer contributes to
the efficient frontier.

To try different data, close the figure window and change the data in cells
B4:D9. Then reexecute all the Excel Link functions. The worksheet then
shows the new frontier data, and MATLAB displays a new efficient frontier
graph.

2-18

Example 5: Bond Cash Flow and Time Mapping

Example 5: Bond Cash Flow and Time Mapping
Example 5 illustrates the use of the MATLAB Financial Toolbox and Excel
Link to compute a set of cash flow amounts and dates given a portfolio of five
bonds whose maturity dates and coupon rates are known.

Click the Sheet6 tab on ExliSamp.xls to try this example.

Make A18 the active cell. Press F2, then Enter to execute the Excel Link
function that transfers the column vector Maturity to MATLAB. Make A19
the active cell to transfer the column vector Coupon Rate to MATLAB. Make
A20 the active cell to transfer the settlement date to MATLAB. Execute the
functions in cells A23 and A24 to use the Financial Toolbox to compute cash

2-19

2 Using Excel Link

flow amounts and dates. Now execute the functions in cells A27 through A29
to transform the dates into string form contained in a cell array. Execute the
functions in cells A32 through A34 to transfer the data to Excel.

Finally, execute the function in cell A37 to display a MATLAB plot of the cash
flows for each portfolio item.

2-20

Example 5: Bond Cash Flow and Time Mapping

2-21

2 Using Excel Link

2-22

3

Functions — By Category

Link Management (p. 3-1) Work with link management

Data Management (p. 3-1) Work with data management

Link Management
You can invoke any link management function except matlabinit as a
worksheet cell formula or in a macro. You invoke matlabinit from the Excel
Tools Macro menu or in a macro subroutine.

matlabinit Initialize Excel Link and start
MATLAB process

MLAutoStart Automatically start MATLAB
process

MLClose Terminate MATLAB process

MLOpen Start MATLAB process

Data Management
You can invoke any data management function except MLGetVar and MLPutVar
as a worksheet cell formula or in a macro. You can invoke MLGetVar and
MLPutVar only in a macro.

3 Functions — By Category

matlabfcn Evaluate MATLAB command given
Excel data

matlabsub Evaluate MATLAB command given
Excel data and designate output
location

MLAppendMatrix Create or append MATLAB matrix
with data from Excel worksheet

MLDeleteMatrix Delete MATLAB matrix

MLEvalString Evaluate command in MATLAB

MLGetFigure Import current MATLAB figure into
Excel spreadsheet

MLGetMatrix Write contents of MATLAB matrix
in Excel worksheet

MLGetVar Write contents of MATLAB matrix
in Excel VBA variable

MLPutMatrix Create or overwrite MATLAB matrix
with data from Excel worksheet

MLPutVar Create or overwrite MATLAB matrix
with data from Excel VBA variable

MLShowMatlabErrors Return standard Excel Link errors
or full MATLAB errors using
MLEvalString

MLStartDir Specify MATLAB current working
directory after startup

MLUseFullDesktop Specify whether to use full MATLAB
desktop or Command Window

3-2

4

Functions — Alphabetical
List

matlabfcn

Purpose Evaluate MATLAB command given Excel data

Syntax Worksheet: matlabfcn(command, inputs)

command MATLAB command to evaluate. The MATLAB
command must be written as "command" (in double
quotes).

inputs Variable length input argument list passed to a
MATLAB command. The argument list may contain
a range of worksheet cells that contain input data.

Description Passes the command to MATLAB for evaluation given the function input
data. The function returns a single value or string depending upon the
MATLAB output. The result is returned to the calling worksheet cell.
This function is intended for use as an Excel worksheet function.

Examples matlabfcn("sum", B1:B10)

sums the data in the spreadsheet cells B1 through B10 returning the
output to the active worksheet cell or Excel Visual Basic for Applications
(VBA) output variable.

matlabfcn("plot", B1:B10, "x")

plots the data in worksheet cells B1 through B10 using x as the marker
type.

See Also matlabsub

4-2

matlabinit

Purpose Initialize Excel Link and start MATLAB process

Syntax matlabinit

Note To run matlabinit, pull down the Excel Tools menu and select
Macro. In the Macro Name/Reference box, enter matlabinit and
click Run. Or, include it in a macro subroutine. You cannot run
matlabinit as a worksheet cell formula or in a macro function.

Description Initializes Excel Link and starts MATLAB process. If Excel Link
has already been initialized and MATLAB is running, subsequent
invocations do nothing. Use matlabinit to start Excel Link and
MATLAB manually when you have set MLAutoStart to "no". If
MLAutoStart is set to "yes", matlabinit executes automatically.

See Also MLAutoStart, MLOpen

4-3

matlabsub

Purpose Evaluate MATLAB command given Excel data and designate output
location

Syntax Worksheet: matlabsub(command, edat, inputs)

command MATLAB command to evaluate. The MATLAB
command must be written as "command" (in
double quotes).

edat Worksheet location where the function writes the
contents of var_name. "edat" (in quotes) directly
specifies the location and it must be a cell address
or a range name. edat (without quotes) is an
indirect reference: the function evaluates the
contents of edat to get the location. edat must be
a worksheet cell address or range name.

inputs Variable length input argument list passed to
MATLAB command. Argument list may contain a
range of worksheet cells that contain input data.

Description Passes the command to MATLAB for evaluation given the function
input data. The function returns a single value or string depending
upon the MATLAB output. This function is intended for use as an Excel
worksheet function.

To return an array of data to the Excel Visual Basic for Applications
(VBA) workspace, see MLEvalString and MLGetVar.

Caution edat must not include the cell that contains the matlabsub
function. In other words, be careful not to overwrite the function itself.
Also make sure there is enough room in the worksheet to write the
matrix contents. If there is insufficient room, the function generates a
fatal error.

4-4

matlabsub

Examples matlabsub("sum", "A1", B1:B10)

sums the data in worksheet cells B1 through B10, returning the output
to cell A1.

See Also matlabfcn

4-5

MLAppendMatrix

Purpose Create or append MATLAB matrix with data from Excel worksheet

Syntax Worksheet: MLAppendMatrix(var_name, mdat)

Macro: MLAppendMatrix var_name, mdat

var_name Name of MATLAB matrix to which to append
data. "var_name" (in quotes) directly specifies
the matrix name. var_name (without quotes) is
an indirect reference: the function evaluates the
contents of var_name to get the matrix name,
and var_name must be a worksheet cell address
or range name

mdat Location of data to append to var_name. mdat
(no quotes). Must be a worksheet cell address
or range name.

If this argument is not initially an Excel Range
data type and you call the function from a
worksheet, Excel proceeds by performing the
necessary type coercion. However, if you call
MLAppendMatrix from within a VBA macro, and
mdat is not an Excel Range data type, the call
fails. Excel generates the error message ByRef
Argument Type Mismatch.

Description Appends data in mdat to MATLAB matrix var_name. Creates var_name
if it does not exist. The function checks the dimensions of var_name and
mdat to determine how to append mdat to var_name. If the dimensions
allow appending mdat as either new rows or new columns, it appends
mdat to var_name as new rows. The function returns an error if the
dimensions do not match. mdat must contain either numeric data or
string data. Data types cannot be combined within the range specified
in mdat. Empty mdat cells become MATLAB matrix elements containing
zero if the data is numeric and empty strings if the data is a string.

4-6

MLAppendMatrix

Examples B is a 2-by-2 MATLAB matrix.

MLAppendMatrix("B", A1:A2)

appends the data in cell range A1:A2 to the MATLAB matrix B. B is now
a 2-by-3 matrix with the data from A1:A2 in the third column.

A1

A2

B is a 2-by-2 MATLAB matrix. Cell C1 contains the label (string) B, and
new_data is the name of the cell range A1:B2.

MLAppendMatrix(C1, new_data)

appends the data in cell range A1:B2 to B. B is now a 4-by-2 matrix with
the data from A1:B2 in the last two rows.

A1 B1

A2 B2

See Also MLPutMatrix

4-7

MLAutoStart

Purpose Automatically start MATLAB process

Syntax Worksheet: MLAutoStart("yes")
MLAutoStart("no")

Macro: MLAutoStart "yes"
MLAutoStart "no"

"yes" Automatically start Excel Link and MATLAB every
time Excel starts (default).

"no" Cancel automatic startup of Excel Link and MATLAB.
If Excel Link and MATLAB are running, it does not
stop them.

Description Sets automatic startup of Excel Link and MATLAB. When Excel Link
is installed, the default is yes. A change of state takes effect the next
time Excel is started.

Examples MLAutoStart("no")

cancels automatic startup of Excel Link and MATLAB. The next time
Excel starts, Excel Link and MATLAB will not start.

See Also matlabinit, MLClose, MLOpen

4-8

MLClose

Purpose Terminate MATLAB process

Syntax Worksheet: MLClose()

Macro: MLClose

Description Terminates the MATLAB process, deletes all variables from the
MATLAB workspace, and tells Excel that MATLAB is no longer
running. If no MATLAB process is running, nothing happens.

See Also MLOpen

4-9

MLDeleteMatrix

Purpose Delete MATLAB matrix

Syntax Worksheet: MLDeleteMatrix(var_name)

Macro: MLDeleteMatrix var_name

var_name Name of MATLAB matrix to delete. "var_name"
(in quotes) directly specifies the matrix name.
var_name (without quotes) is an indirect reference:
the function evaluates the contents of var_name to
determine the matrix name, and var_name must be
a worksheet cell address or range name.

Description Deletes the named matrix from the MATLAB workspace.

Example MLDeleteMatrix("A")

deletes matrix A from the MATLAB workspace.

4-10

MLEvalString

Purpose Evaluate command in MATLAB

Syntax Worksheet: MLEvalString(command)

Macro: MLEvalString command

command MATLAB command to evaluate. "command" (in
quotes) directly specifies the command. command
(without quotes) is an indirect reference: the
function evaluates the contents of command to get
the command, and command must be a worksheet
cell address or range name.

Description Passes the command string to MATLAB for evaluation. The specified
action alters only the MATLAB workspace. Nothing is done in the Excel
workspace.

Examples MLEvalString("b = b/2;plot(b)")

divides the MATLAB variable b by 2 and plots it. Only the MATLAB
variable b is modified. To update data in the Excel worksheet, use
MLGetMatrix.

See Also MLGetMatrix

4-11

MLGetFigure

Purpose Import current MATLAB figure into Excel spreadsheet

Syntax Worksheet: MLGetFigure(width,height)

Macro: MLGetFigure width, height

width Specify the width in normalized units of the
MATLAB figure when imported into Excel.

height Specify the height in normalized units of the
MATLAB figure when imported into Excel.

Description Import the current MATLAB figure into Excel where the left-top corner
of the figure is the current spreadsheet cell.

If worksheet calculation mode is automatic, MLGetFigure executes
when you enter the formula in a cell. If worksheet calculation mode
is manual, enter the MLGetFigure function in a cell, then press F9 to
execute it. However, pressing F9 in this situation may also re-execute
other worksheet functions and generate unpredictable results.

If you use MLGetFigure in a macro subroutine, enter MatlabRequest
on the line after the MLGetFigure. MatlabRequest initializes internal
Excel Link variables and enables MLGetFigure to function in a
subroutine. Do not include MatlabRequest in a macro function unless
the function is called from a subroutine.

Examples MLGetFigure(.50,.25)

imports the current MATLAB figure into Excel. The width of the figure
is half that of the original MATLAB figure and the height is quarter of
the original figure.

See Also MLGetMatrix, MLGetVar

4-12

MLGetMatrix

Purpose Write contents of MATLAB matrix in Excel worksheet

Syntax Worksheet: MLGetMatrix(var_name, edat)

Macro: MLGetMatrix var_name, edat

var_name Name of MATLAB matrix to access."var_name"
(in quotes) directly specifies the matrix name.
var_name (without quotes) is an indirect reference:
the function evaluates the contents of var_name
to get the matrix name, and var_name must be a
worksheet cell address or range name. var_name
cannot be the MATLAB variable ans.

edat Worksheet location where the function writes the
contents of var_name. "edat" (in quotes) directly
specifies the location and it must be a cell address or
a range name. edat (without quotes) is an indirect
reference: the function evaluates the contents
of edat to get the location, and edat must be a
worksheet cell address or range name.

Description Writes the contents of MATLAB matrix var_name in the Excel
worksheet, beginning in the upper left cell specified by edat. If data
already exists in the specified worksheet cells, it is overwritten. If the
dimensions of the MATLAB matrix are larger than those of the specified
cells, the data will overflow into additional rows and columns.

Caution

edat must not include the cell that contains the MLGetMatrix function.
In other words, be careful not to overwrite the function itself. Also make
sure there is enough room in the worksheet to write the matrix contents.
If there is insufficient room, the function generates a fatal error.

4-13

MLGetMatrix

If edat is an explicit cell address and you later insert or delete rows
or columns, or move or copy the function to another cell, edit edat
to correct the address. Excel Link does not automatically adjust cell
addresses in MLGetMatrix.

If worksheet calculation mode is automatic, MLGetMatrix executes
when you enter the formula in a cell. If worksheet calculation mode is
manual, enter the MLGetMatrix function in a cell, then press F9 to
execute it. However, pressing F9 in this situation may also re-execute
other worksheet functions and generate unpredictable results.

If you use MLGetMatrix in a macro subroutine, enter MatlabRequest
on the line after the MLGetMatrix. MatlabRequest initializes internal
Excel Link variables and enables MLGetMatrix to function in a
subroutine. Do not include MatlabRequest in a macro function unless
the function is called from a subroutine.

Examples MLGetMatrix("bonds", "Sheet2!C10")

writes the contents of the MATLAB matrix bonds starting in cell C10 of
Sheet2. If bonds is a 4-by-3 matrix, data fills cells C10..E13.

MLGetMatrix(B12, B13)

accesses the MATLAB matrix named as a string in worksheet cell B12
and writes the contents of the matrix in the worksheet starting at the
location named as a string in worksheet cell B13.

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest
End Sub

writes the contents of MATLAB matrix A in the worksheet starting
at the cell named RangeA.

See Also MLAppendMatrix, MLPutMatrix

4-14

MLGetVar

Purpose Write contents of MATLAB matrix in Excel VBA variable

Syntax MLGetVar ML_var_name, VBA_var_name

ML_var_name Name of MATLAB matrix to access.
"ML_var_name" (in quotes) directly specifies
the matrix name. ML_var_name (without
quotes) is an indirect reference: the function
evaluates the contents of ML_var_name to get
the matrix name, and ML_var_name must be
a VBA variable containing the matrix name
as a string. var_name cannot be the MATLAB
variable ans.

VBA_var_name Name of VBA variable where the function
writes the contents of ML_var_name. Use
VBA_var_name without quotes.

Description Writes the contents of MATLAB matrix ML_var_name in the
Excel Visual Basic for Applications (VBA) variable VBA_var_name.
Creates VBA_var_name if it does not exist. Replaces existing data in
VBA_var_name. Use MLGetVar only in a macro subroutine, not in a
macro function or in a subroutine called by a function.

Examples Sub Fetch()
MLGetVar "J", DataJ
End Sub

writes the contents of MATLAB matrix J in the VBA variable named
DataJ.

See Also MLPutVar

4-15

MLOpen

Purpose Start MATLAB process

Syntax Worksheet: MLOpen()

Macro: MLOpen

Description Starts MATLAB process. If a MATLAB process has already been
started, subsequent calls to MLOpen do nothing. Use MLOpen to restart
MATLAB after you have stopped it with MLClose in a given Excel
session.

Note We recommend using matlabinit rather than MLOpen, since
matlabinit starts MATLAB and initializes Excel Link.

Examples MLOpen()

starts the MATLAB process.

See Also matlabinit, MLClose

4-16

MLPutMatrix

Purpose Create or overwrite MATLAB matrix with data from Excel worksheet

Syntax Worksheet: MLPutMatrix(var_name, mdat)

Macro: MLPutMatrix var_name, mdat

var_name Name of MATLAB matrix to create or overwrite.
"var_name" (in quotes) directly specifies the matrix
name. var_name (without quotes) is an indirect
reference: the function evaluates the contents of
var_name to get the matrix name, and var_name must
be a worksheet cell address or range name.

mdat Location of data to copy into var_name. mdat (no
quotes). Must be a worksheet cell address or range
name.

Description Creates or overwrites matrix var_name in MATLAB workspace with
specified data in mdat. Creates var_name if it does not exist. If
var_name already exists, this function replaces the contents with mdat.
Empty numeric data cells within the range of mdat become numeric
zeros within the MATLAB matrix identified by var_name.

If any element of mdat contains string data, mdat is exported as a
MATLAB cell array. Empty string elements within the range of mdat
become NaNs within the MATLAB cell array.

To use MLPutMatrix in a subroutine, you must indicate the source of the
worksheet data using the Excel macro Range. For example:

Sub test()
MLPutMatrix "a", Range("A1:A3")
End Sub

If you have a named range in your worksheet, you can use the name
instead of actually specifying the range. For example:

Sub test()

4-17

MLPutMatrix

MLPutMatrix "a", Range("temp")
End Sub

where temp is a named range in your worksheet.

Examples MLPutMatrix("A", A1:C3)

creates or overwrites matrix A in the MATLAB workspace with the
data in the worksheet range A1:C3.

See Also MLAppendMatrix, MLGetMatrix

4-18

MLPutVar

Purpose Create or overwrite MATLAB matrix with data from Excel VBA variable

Syntax MLPutVar ML_var_name, VBA_var_name

ML_var_name Name of MATLAB matrix to create or overwrite.
"ML_var_name" (in quotes) directly specifies the
matrix name. ML_var_name (without quotes) is
an indirect reference: the function evaluates
the contents of ML_var_name to get the matrix
name, and ML_var_name must be a VBA variable
containing the matrix name as a string.

VBA_var_name Name of VBA variable whose contents are written
to ML_var_name. Use VBA_var_name without
quotes.

Description Creates or overwrites matrix ML_var_name in MATLAB workspace with
data in VBA_var_name. Creates ML_var_name if it does not exist. If
ML_var_name already exists, this function replaces the contents with
data from VBA_var_name. Use MLPutVar only in a macro subroutine, not
in a macro function or in a subroutine called by a function.

Empty numeric data cells within VBA_var_name become numeric zeros
within the MATLAB matrix identified by ML_var_name.

If any element of VBA_var_name contains string data, VBA_var_name
is exported as a MATLAB cell array. Empty string elements within
VBA_var_name become NaNs within the MATLAB cell array.

Examples Sub Put()
MLPutVar "K", DataK

End Sub

creates or overwrites MATLAB matrix K with the data in the Excel
Visual Basic for Applications (VBA) variable DataK.

4-19

MLPutVar

See Also MLGetVar

4-20

MLShowMatlabErrors

Purpose Return standard Excel Link errors or full MATLAB errors using
MLEvalString

Syntax Worksheet: MLShowMatlabErrors("yes")

MLShowMatlabErrors("no") (Default)

Macro: MLShowMatlabErrors "yes"

MLShowMatlabErrors "no" (Default)

"yes" Displays the full MATLAB error string in Excel
upon MLEvalString failure.

"no" Displays the standard Excel Link errors in Excel
upon MLEvalString failure.

Description Sets the error display mode of Excel Link when executing MATLAB
commands using MLEvalString.

Examples MLShowMatlabErrors("no")

will cause MLEvalString failures to show standard Excel Link errors
such as #COMMAND!.

MLShowMatlabErrors("yes")

Will cause MLEvalString failures to show MATLAB error strings, for
example:

??? Undefined function or variable 'foo'..

See Also MLEvalString

4-21

MLStartDir

Purpose Specify MATLAB current working directory after startup

Syntax Worksheet: MLStartDir(path)

Macro: MLStartDir path

path Specify the current MATLAB working directory
after startup.

Description Sets the working directory for MATLAB after startup. Note this
function does not work like the standard Windows Start In setting in
that it will not automatically run any startup.m or matlabrc.m found
in the directory specified.

Examples MLStartDir (d:\work)

tells MATLAB to run the command:

cd d:\work

after it starts up.

See Also MLAutoStart

4-22

MLUseFullDesktop

Purpose Specify whether to use full MATLAB desktop or Command Window

Syntax Worksheet: MLUseFullDesktop("yes")
MLUseFullDesktop("no")

Macro: MLUseFullDesktop "yes"

MLUseFullDesktop "no"

"yes" Start MATLAB with the full desktop.

"no" Start MATLAB with the Command window only.

Description Sets MATLAB to start with the full desktop or Command window only.
When Excel Link is installed, the default is "yes".

Examples MLUseFullDesktop("no")

will cause MATLAB to start with the command window only.

See Also matlabinit, MLClose, MLOpen

4-23

A

Error Messages and
Troubleshooting

Excel Cell Error Messages (p. A-2) Error messages displayed in a
worksheet cell.

Error Messages (p. A-5) Error messages displayed in an
Excel error messages.

Audible Error Signals (p. A-7) Audible error signals while passing
data to MATLAB.

Data Errors (p. A-8) Undesirable data characteristics.

A Error Messages and Troubleshooting

Excel Cell Error Messages
Excel may display one of these error messages in a worksheet cell.

In the following table of Excel cell error messages, the first column contains
the message provided by Excel. The error messages all begin with the number
sign #. Most end with an exclamation point ! or with a question mark ?.

Excel Cell Error Messages

Excel Cell
Error Message Meaning Solution

#COLS>256 Your MATLAB variable exceeds
the Excel limit of 256 columns.

This is a limitation in Excel. Try
the computation with a variable
containing fewer columns.

#COMMAND! MATLAB does not recognize the
command in an MLEvalString
function. The command may be
misspelled.

Verify the spelling of the MATLAB
command. Correct typing errors.

#DIMENSION! You used MLAppendMatrix and
the dimensions of the appended
data do not match the dimensions
of the matrix you want to append.

Verify the matrix dimensions and
the appended data dimensions,
and correct the argument. See
MLAppendMatrix in Chapter 4,
“Functions — Alphabetical List”.

#INVALIDNAME! You entered an illegal variable
name.

Make sure to use legal MATLAB
variable names. MATLAB
variable names must start with a
letter followed by up to 30 letters,
digits, or underscores.

#INVALIDTYPE! You have specified an illegal
MATLAB data type with
MLGetVar or MLGetMatrix.

See “Data Types” on page 1-13 for
a list of supported MATLAB data
types.

#MATLAB? You used an Excel Link function
and MATLAB is not running.

Start Excel Link and MATLAB.
See “Starting Excel Link” on page
1-5.

A-2

Excel Cell Error Messages

Excel Cell Error Messages (Continued)

Excel Cell
Error Message Meaning Solution

#NAME? Excel doesn’t recognize
the function name. The
excllink.xla add-in is not
loaded, or the function name may
be misspelled.

Be sure the excllink.xla add-in
is loaded. See “Configuring Excel
to Work with Excel Link” on page
1-3. Check the spelling of the
function name. Correct typing
errors.

#NONEXIST! You referenced a nonexistent
matrix in an MLGetMatrix or
MLDeleteMatrix function. The
matrix name may be misspelled.

Verify the spelling of the MATLAB
matrix. Use the MATLAB whos
command to display existing
matrices. Correct typing errors.

#ROWS>65536 Your MATLAB variable exceeds
the Excel limit of 65536 rows.

This is a limitation in Excel. Try
the computation with a variable
containing fewer rows.

#SYNTAX? You entered an Excel Link
function with incorrect syntax;
for example, the double quotes
(") may be missing, or you used
single quotes (’) instead of double
quotes.

Verify and correct the function
syntax. See Chapter 4, “Functions
— Alphabetical List” for function
syntax.

#VALUE! An argument is missing from a
function, or a function argument
is the wrong type.

Supply the correct number of
function arguments, of the correct
type.

#VALUE! A macro subroutine uses
MLGetMatrix followed by
MatlabRequest, which is correct
standard usage. A macro function
calls that subroutine, and you
execute that function from a
worksheet cell. The function
works correctly, but this message
appears in the cell.

Since the function works
correctly, you may ignore the
message. Or, in this special case,
remove MatlabRequest from the
subroutine.

A-3

A Error Messages and Troubleshooting

Note When you open an Excel worksheet that contains Excel Link functions,
Excel tries to execute the functions from the bottom up and right to left, thus
possibly generating cell error messages (#COMMAND!, #NONEXIST!, etc.). Such
behavior is usual for Excel. Simply ignore the messages, close any MATLAB
figure windows, and reexecute the cell functions one at a time in the correct
order by pressing F2, then Enter.

A-4

Error Messages

Error Messages
Excel may display one of these error message boxes.

• The first column of this table shows the error messages. The first three are
from Excel, and the last one is from the license manager.

• The second column 2 indicates the type of error that caused the message
box to appear.

• The third column proposes a solution for the error.

Excel Error Message Boxes

Excel Error Message Box Meaning Solution

You entered a formula
incorrectly. Common errors
include a space between the
function name and the left
parenthesis; or missing, extra,
or mismatched parentheses.

Check entry and correct typing
errors.

You tried to execute a
macro and the location of
excllink.xla is incorrect.

Click OK. The References
window opens. Remove
the check from MISSING:
excllink.xla. Find
excllink.xla in its correct
location, select its check box
in the References window, and
click OK.

A-5

A Error Messages and Troubleshooting

Excel Error Message Boxes (Continued)

Excel Error Message Box Meaning Solution

You used MLGetMatrix and the
matrix is larger than the space
available in the worksheet.
This error destabilizes Excel
Link and changes worksheet
calculation mode to manual.

Click OK. Reset worksheet
calculation mode to automatic
and save your worksheet (if
desired). Close Excel and
MATLAB. Restart Excel, Excel
Link, and MATLAB.

The license passcode that you
entered was invalid.

Check that you entered the
license passcode properly. If
you used a proper passcode
and you are still unable to
start Excel Link, contact your
MathWorks representative.

A-6

Audible Error Signals

Audible Error Signals
Audible error signals while passing data to MATLAB with MLPutMatrix
or MLAppendMatrix usually mean you have insufficient computer memory
to carry out the operation. Close other applications or clear unnecessary
variables from the MATLAB workspace and try again. If the error signal
reoccurs, you probably have insufficient physical memory in your computer
for this operation.

A-7

A Error Messages and Troubleshooting

Data Errors
Data in the MATLAB or Excel workspaces may exhibit these undesired
characteristics.

Data Errors

Data Error Cause Solution

MATLAB matrix cells
contain zeros (0).

Corresponding Excel worksheet
cells are empty.

Excel worksheet cells must
contain only numeric or string
data.

MATLAB matrix is a
1-by-1 zero matrix.

You used quotes around
the data-location argument
in MLPutMatrix or
MLAppendMatrix.

Correct the syntax to remove
quotes.

MATLAB matrix is
empty ([]).

You referenced a nonexistent
VBA variable in MLPutVar.

Correct the macro; you may
have typed the variable name
incorrectly.

VBA matrix is empty. You referenced a nonexistent
MATLAB variable in MLGetVar.

Correct the macro; you may
have typed the variable name
incorrectly.

A-8

B

Installed Files

Files and Directories (p. B-2) Locations of files and directories
created by Excel Link installation.

B Installed Files

Files and Directories
The Excel Link installation program creates the subdirectory exlink under
matlabroot/toolbox/. This directory contains the files

• excllink.xla: Excel Link add-in

• ExliSamp.xls: Excel Link samples described in this manual

Installation also creates an Excel Link initialization file, exlink.ini, in the
appropriate Windows directory (for example, C:\Winnt).

For all operating systems, the C:\MATLAB\bin directory should be on
your system path. On Windows 2000, add the C:\Winnt\system and
C:\Winnt\system32 directories to your path.

Excel Link uses Kernel32.dll, which should already be in the appropriate
Windows system directory (for example, C:\Winnt\system32).

B-2

Index

Index1904 date system 1-13

A
add-in, Excel Link 1-4 A-3
audible error signals A-7
/automation option 1-5

B
beeps A-7
binomial tree 2-12

C
calculation mode A-6
cash flow example 2-19
cell error messages A-2
COLS error A-2
COMMAND error A-2
computer memory errors A-7
curve fitting example 2-2

D
data errors A-8
data interpolation example 2-8
data types 1-13
data-location argument A-7 to A-8
dates 1-13
DIMENSION error A-2
double quotes A-3

E
efficient frontier example 2-15
empty matrix A-8
error message boxes A-5
error messages A-2
examples

cash flow 2-19

efficient frontier 2-15
interpolating data 2-8
regression and curve fitting 2-2
stock option 2-12

Excel error message boxes A-5
Excel Link

installing 1-3
starting 1-5
stopping 1-3 1-6

excllink.xla B-2
excllink.xla add-in A-5
exlink subdirectory B-2
exlink.ini file B-2
ExliSamp.xls file

location B-2
purpose 2-1

F
function names 1-10

I
initialization file B-2
interpolating data 2-8
INVALIDNAME error A-2
INVALIDTYPE error A-2

K
Kernel32.dll B-2

L
license passcode A-6
link management functions 1-7

M
macros 1-12
MATLAB error A-2

Index-1

Index

matlabfcn 4-2
matlabinit 4-3
matlabsub 4-4
matrix dimensions A-2
MLAppendMatrix 4-6
MLAutoStart 4-8
MLClose 4-9
MLDeleteMatrix 4-10
MLEvalString 4-11
MLFullDesktop 4-23
MLGetFigure 4-12
MLGetMatrix 4-13
MLGetVar 4-15
MLOpen 4-16
MLPutMatrix 4-17
MLPutVar 4-19
MLShowMatlabErrors 4-21
MLStartDir 4-22

N
NAME error A-3
NONEXIST error A-3
nonexistent variable A-8

P
passcode

license A-6

R
regression and curve fitting 2-2

requirements 1-3
ROWS error A-3

S
signals error A-7
single quotes A-3
stock option pricing example 2-12
SYNTAX error A-3
system path

files on B-2

T
troubleshooting error messages A-2

V
VALUE error A-3
variable names 1-10

W
worksheet formulas 1-10
worksheets 1-11

saved 1-13

Z
zero matrix A-8
zero matrix cells A-8

Index-2

	toc
	Getting Started
	What Is Excel Link?
	Understanding the Environment

	Installing and Operating Excel Link
	System Requirements
	Installing Excel Link
	Configuring Excel to Work with Excel Link
	Starting Excel Link
	Automatic Start
	Manual Start

	Connecting to an Existing MATLAB Session
	Stopping Excel Link

	What the Functions Do
	Link Management Functions
	Data Management Functions

	Tips and Reminders
	Syntax
	Function Names
	Worksheet Formulas
	Variable Names

	Worksheets
	Macros
	Data Types
	Dates
	Saved Worksheets
	Information for International Users

	Using Excel Link
	Example 1: Regression and Curve Fitting
	Worksheet Version
	Macro Version

	Example 2: Interpolating Data
	Example 3: Pricing a Stock Option with the Binomial Model
	Example 4: Calculating and Plotting the Efficient Frontier of Fi
	Example 5: Bond Cash Flow and Time Mapping

	Functions — By Category
	Link Management
	Data Management

	Functions — Alphabetical List
	Error Messages and Troubleshooting
	Excel Cell Error Messages
	Error Messages
	Audible Error Signals
	Data Errors

	Installed Files
	Files and Directories

	Index

	tables
	Excel Cell Error Messages
	Excel Error Message Boxes
	Data Errors

